ChatOpenAI
This notebook provides a quick overview for getting started with OpenAI chat models. For detailed documentation of all ChatOpenAI features and configurations head to the API reference.
OpenAI has several chat models. You can find information about their latest models and their costs, context windows, and supported input types in the OpenAI docs.
Note that certain OpenAI models can also be accessed via the Microsoft Azure platform. To use the Azure OpenAI service use the AzureChatOpenAI integration.
Overviewโ
Integration detailsโ
Class | Package | Local | Serializable | JS support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatOpenAI | langchain-openai | โ | beta | โ |
Model featuresโ
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Native async | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|---|
โ | โ | โ | โ | โ | โ | โ | โ | โ | โ |
Setupโ
To access OpenAI models you'll need to create an OpenAI account, get an API key, and install the langchain-openai
integration package.
Credentialsโ
Head to https://platform.openai.com to sign up to OpenAI and generate an API key. Once you've done this set the OPENAI_API_KEY environment variable:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API key: ")
Enter your OpenAI API key: ยทยทยทยทยทยทยทยท
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
Installationโ
The LangChain OpenAI integration lives in the langchain-openai
package:
%pip install -qU langchain-openai
Instantiationโ
Now we can instantiate our model object and generate chat completions:
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
model="gpt-4o",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# api_key="...", # if you prefer to pass api key in directly instaed of using env vars
# base_url="...",
# organization="...",
# other params...
)
Invocationโ
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content="J'adore la programmation.", response_metadata={'token_usage': {'completion_tokens': 5, 'prompt_tokens': 31, 'total_tokens': 36}, 'model_name': 'gpt-4o', 'system_fingerprint': 'fp_43dfabdef1', 'finish_reason': 'stop', 'logprobs': None}, id='run-012cffe2-5d3d-424d-83b5-51c6d4a593d1-0', usage_metadata={'input_tokens': 31, 'output_tokens': 5, 'total_tokens': 36})
print(ai_msg.content)
J'adore la programmation.
Chainingโ
We can chain our model with a prompt template like so:
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
AIMessage(content='Ich liebe Programmieren.', response_metadata={'token_usage': {'completion_tokens': 5, 'prompt_tokens': 26, 'total_tokens': 31}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_b28b39ffa8', 'finish_reason': 'stop', 'logprobs': None}, id='run-94fa6741-c99b-4513-afce-c3f562631c79-0')
Tool callingโ
OpenAI has a tool calling (we use "tool calling" and "function calling" interchangeably here) API that lets you describe tools and their arguments, and have the model return a JSON object with a tool to invoke and the inputs to that tool. tool-calling is extremely useful for building tool-using chains and agents, and for getting structured outputs from models more generally.
ChatOpenAI.bind_tools()โ
With ChatOpenAI.bind_tools
, we can easily pass in Pydantic classes, dict schemas, LangChain tools, or even functions as tools to the model. Under the hood these are converted to an OpenAI tool schemas, which looks like:
{
"name": "...",
"description": "...",
"parameters": {...} # JSONSchema
}
and passed in every model invocation.
from langchain_core.pydantic_v1 import BaseModel, Field
class GetWeather(BaseModel):
"""Get the current weather in a given location"""
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
llm_with_tools = llm.bind_tools([GetWeather])
ai_msg = llm_with_tools.invoke(
"what is the weather like in San Francisco",
)
ai_msg
AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_H7fABDuzEau48T10Qn0Lsh0D', 'function': {'arguments': '{"location":"San Francisco"}', 'name': 'GetWeather'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 15, 'prompt_tokens': 70, 'total_tokens': 85}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': 'fp_b28b39ffa8', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-b469135e-2718-446a-8164-eef37e672ba2-0', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'San Francisco'}, 'id': 'call_H7fABDuzEau48T10Qn0Lsh0D'}])
AIMessage.tool_callsโ
Notice that the AIMessage has a tool_calls
attribute. This contains in a standardized ToolCall format that is model-provider agnostic.
ai_msg.tool_calls
[{'name': 'GetWeather',
'args': {'location': 'San Francisco'},
'id': 'call_H7fABDuzEau48T10Qn0Lsh0D'}]
For more on binding tools and tool call outputs, head to the tool calling docs.
Fine-tuningโ
You can call fine-tuned OpenAI models by passing in your corresponding modelName
parameter.
This generally takes the form of ft:{OPENAI_MODEL_NAME}:{ORG_NAME}::{MODEL_ID}
. For example:
fine_tuned_model = ChatOpenAI(
temperature=0, model_name="ft:gpt-3.5-turbo-0613:langchain::7qTVM5AR"
)
fine_tuned_model(messages)
AIMessage(content="J'adore la programmation.", additional_kwargs={}, example=False)
API referenceโ
For detailed documentation of all ChatOpenAI features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_openai.chat_models.base.ChatOpenAI.html
Relatedโ
- Chat model conceptual guide
- Chat model how-to guides